Решение дифференциальных уравнений с запаздыванием

Форум пользователей пакета Maple

Модератор: Admin

Shestakov Mikhail
Сообщения: 2
Зарегистрирован: Вт ноя 20, 2018 9:28 pm

Решение дифференциальных уравнений с запаздыванием

Сообщение Shestakov Mikhail » Вт ноя 20, 2018 9:43 pm

Добрый день!
Как решить в Maple вот такую задачу:
Нужно решить систему дифференциальных уравнений с запаздыванием. Но задержка не является константой, не является какой-то конкретной функцией. Задержка задается своим дифференциальным уравнением.
Как пример, привожу систему Росслера:
x'(t)=-y(t)-z(t),
y'(t)=x(t)+0.2*y(t)+F(t),
z'(t)=0.2+z(t)*(x(t)-5.7),
tau'(t)=r1*(y(t)-y(t-tau(t))),
gamma'(t)=r2*(y(t)-y(t-tau(t)).
Где F(t) это довольно сложная функция, которая зависит от y(t), gamma(t), tau(t).
r1,r2 - какие-то числа(параметры)

Markiyan Hirnyk
Сообщения: 1248
Зарегистрирован: Вс дек 04, 2011 11:07 pm

Re: Решение дифференциальных уравнений с запаздыванием

Сообщение Markiyan Hirnyk » Ср ноя 21, 2018 6:55 pm

Это решение в Мэйпле в настоящее время невозможно.

Shestakov Mikhail
Сообщения: 2
Зарегистрирован: Вт ноя 20, 2018 9:28 pm

Re: Решение дифференциальных уравнений с запаздыванием

Сообщение Shestakov Mikhail » Чт ноя 22, 2018 1:39 pm

Где про это можно почитать?

Markiyan Hirnyk
Сообщения: 1248
Зарегистрирован: Вс дек 04, 2011 11:07 pm

Re: Решение дифференциальных уравнений с запаздыванием

Сообщение Markiyan Hirnyk » Чт ноя 22, 2018 1:47 pm

Возможности Мэйпла в решении ОДУ с запаздывающим аргументом описаны здесь.